Authorised Distributors:-
 ASH \& ALAIN INDIA PVT LTD

OmROn
S-100, F.I.E.E., Okhla Industrial Area, Phase-ii, New Delhi-110020(India)
Tel:011-43797575 Fax:011-43797574 E-mail:sales@ashalain.com

Weighing Meter

Highly Functional Weighing Meter with Easy-to-read LED

- Programmable through the front panel or via RS-232C, RS-485, or RS-422

■ Programming with easy setup and calibration

- Load cell can be connected to a maximum of $20 \mathrm{mV} / \mathrm{V}$

■ Easy-to-use scaling function with the key programming method

■ Output boards include communications and linear boards

■ Tare function allows zero adjustment at the reference position

- Load cell power supply of 100 mA at 10 VDC
- NEMA4/IP66 front panel

UL, CSA and CE approved

Ordering Information

To order output and communication boards, refer to the separate K31 data sheet called Output and Communication Boards. See page 155.

■ BASE UNIT

Model	Supply voltage	Part number
Basic models	100 to 240 VAC	K3NV-LC1A
	12 to 24 VDC	K3NV-LC2A
Process value LED and front-panel control keys. Can connect to any output board or, without an output board, can be used for display only.		
Set value LED models Process value LED, set value LED, and front-panel control keys. Can connect to relay contact, transistor, or combination output boards.	100 to 240 VAC	K3NV-LC1C
	12 to 24 VDC	K3NV-LC2C

Note: Both models must be used with an output board in order for them to operate.

MODEL NUMBER LEGEND

Base Units

1, 2. Input Sensors Codes
LC: Load cell input
3. Supply Voltage

1: 100 to 240 VAC
2: 12 to 24 VDC
4. Display

A: Basic
C: Set Value LED Display

Specifications

RATINGS

Supply voltage		100 to 240 VAC ($50 / 60 \mathrm{~Hz}$); 12 to 24 VDC		
Operating voltage	ange	85% to 110% of supply voltage		
Power consumption (See Note.)		15 VA max. (max. AC load with all indicators lit) 10 W max. (max. DC load with all indicators lit)		
Sensor power supply		100 mA at $10 \mathrm{VDC} \pm 5 \%$		
Insulation resistance		$20 \mathrm{M} \Omega \mathrm{min}$. (at 500 VDC) between external terminal and case. Insulation provided between inputs, outputs, and power supply.		
Dielectric withstand voltage		2,000 VAC for 1 min between external terminal and case. Insulation provided between inputs, outputs, and power supply.		
Noise immunity		$\pm 1,500 \mathrm{~V}$ on power supply terminals in normal or common mode $\pm 1 \mu \mathrm{~s}, 100 \mathrm{~ns}$ for square-wave noise with 1 ns		
Vibration resistance		Malfunction: 10 to $55 \mathrm{~Hz}, 0.5-\mathrm{mm}$ for 10 min each in X, Y, and Z directions Destruction: 10 to $55 \mathrm{~Hz}, 0.75-\mathrm{mm}$ for 2 hrs each in X, Y, and Z directions		
Shock resistance		Malfunction: $98 \mathrm{~m} / \mathrm{s}^{2}(10 \mathrm{G})$ for 3 times each in X, Y, and Z directions Destruction: $294 \mathrm{~m} / \mathrm{s}^{2}(30 \mathrm{G})$ for 3 times each in X, Y, and Z directions		
Ambient temperature	Operating	-10 to $55^{\circ} \mathrm{C}\left(14\right.$ to $\left.131{ }^{\circ} \mathrm{F}\right)$ with no icing		
	Storage	-20 to $65^{\circ} \mathrm{C}\left(-4\right.$ to $149^{\circ} \mathrm{F}$) with no icing		
Ambient humidity	Operating	25\% to 85\% (with no condensation)		
Ambient atmosphere		Must be free of corrosive gas		
EMC				
Approved standards		UL508, CSA22.2; conforms to EN50081-2, EN50082-2, EN61010-1 (IEC1010-1); conforms to VDE106/part 100 (Finger Protection) when the terminal cover is mounted.		
Weight		Approx. 400 g		

Note: An Intelligent Signal Processor with DC supply voltage requires approximately 1 A DC as control power supply current the moment the Intelligent Signal Processor is turned on. Do not forget to take this into consideration when using several Intelligent Signal Processors. When the Intelligent Signal Processor is not in measuring operation (e.g., the Intelligent Signal Processor has been just turned on or is operating for startup compensation time), the display will read "nong" and all outputs will be OFF.

CHARACTERISTICS

Input signal	DC voltage/current		
A/D conversion method	Double integral method		
Sampling period	50 Hz: 12.5 times/s; 60 Hz : 15 times/s (selectable)		
Display refresh period	Sampling period (sampling times multiplied by number of averaging times if simple average processing is selected.)		
Max. displayed digits	5 digits (-19999 to 99999)		
Display	7-segment LED		
Polarity display	"-" is displayed automatically with a negative input signal.		
Zero display	Leading zeros are not displayed.		
Scaling function	Programmable with front-panel key inputs (range of display: -19999 to 99999). The decimal point position can be set freely.		
HOLD function	Maximum hold (maximum data) Minimum hold (minimum data)		
External controls	HOLD: Process value held RESET: Maximum/Minimum data reset ZERO: Forced zero		
Comparative output hysteresis setting	Programmable with front-panel key inputs (1 to 9999).		
Other functions	Variable linear output range (for models with linear outputs only) Remote/Local processing (available for communications output models only) Maximum/Minimum value data reset with front panel keys		
Tare (forced-zero) set with front panel keys			
Averaging processing function (simple or moving average)			
Startup compensation time (0.0 to 99.9 s)			
Comparative output pattern selection		,	Security
:---			
Field calibration	\quad	Relay contact output (3 or 5 outputs)	
:---			
Transistor output (NPN and PNP open collector), BCD (NPN open collector)			
Parallel BCD (NPN open collector) + transistor output (NPN open collector)			
Linear output (4 to 20 mA, 1 to 5 V) + transistor output (NPN open collector)			
Communication functions (RS-232C, RS-485, RS-422)			
Communication functions (RS-232C, RS-485, RS-422) + transistor output (NPN open			
collector)			

MEASURING RANGES

Input range		Measuring range	Input impedance	Reliability (See Note 2.)	Instantaneous overload (30 seconds)
DC voltage	P	0.00 to 199.99 mV	$10 \mathrm{M} \Omega \mathrm{min}$.	$\pm 0.1 \%$ rdg ± 5 digit max.	$\pm 200 \mathrm{~V}$
	b	0.000 to 19.999 mV	$10 \mathrm{M} \Omega \mathrm{min}$.	$\pm 0.1 \%$ rdg ± 5 digit max.	$\pm 200 \mathrm{~V}$
	I	$\pm 100.00 \mathrm{mV}$	$10 \mathrm{M} \Omega \mathrm{min}$.	$\pm 0.1 \%$ rdg ± 3 digit max.	$\pm 200 \mathrm{~V}$

Note: 1. The "rdg" stands for "reading value."
2. The accuracy is guaranteed at the ambient temperature of $23 \pm 5^{\circ} \mathrm{C}$. The reliability becomes $\pm 0.1 \%$ FS for values smaller than 10% of the maximum input value for any input range.

Engineering Data

LOAD CELL CONNECTION EXAMPLE

Nomenclature

Name	Functions
1. SV display	Displays the set value or parameter. Available for Set Value LED Models only.
2. PV display	Displays the process value in addition to the max./min. value or parameter.
3. Comparative output status indicators	Displays the status of comparative output.
4. SV display status	Indicates which comparative set value is currently on the SV display.
5. ESC Key	Used to return to the RUN mode from the Setting, Protect, or Maintenance mode. The process value, maximum value, or minimum value to be displayed can be selected.
6. Mode Key	Used to enter the Setting mode. Used to allow the PV display to indicate set values sequentially. Available for Basic Models only. Used to indicate set values sequentially on the SV display. Available for Set Value LED Models only.
7. Status indicators	HOLD: Lit when HOLD input is ON. MAX: Lit when the maximum value is indicated on the PV display. MIN: Lit when the minimum value is indicated on the PV display. ZERO: Lit when the forced zero function is activated. PROG: Lit or flashes while parameters are being set.
8. Teaching indicator	Lit when the teaching function is enabled and flashes when the Intelligent Signal Processor is in teaching operation.
9. RESET/TEACH Key	The forced zero, maximum value, and minimum value are reset by pressing this key. Teaching is available when the teaching function is enabled.
10. Up Key and Shift Key	The digit being set is scrolled by pressing the Shift Key. The set value increases by one whenever the Up Key is pressed.

Operation

SETTING PROCEDURES

The K3NV has four modes: RUN mode for normal operations, Setting mode for initial parameter input, Protect mode for lock-out configuration, and Maintenance mode for initializing set values and user calibration. The parameters that are accessible on any individual K3NV will vary depending on the output board installed. Refer to the K3NV Operation Manual for details.

PARAMETERS

Scaling 5CRL
The Intelligent Signal Processor converts input signals into desired physical values．

INPUT2：	Any input value
DISPLAY2：	Displayed value corresponding to INPUT2
INPUT1：	Any input value
DISPLAY1：	Displayed value corresponding to INPUT1

Average Processing Rッル

The average processing function stabilizes displayed values by averaging the corresponding analog input signals that fluctuate dynamically or reducing the noise in the input signals．

Startup Compensation Time StLRE

The startup compensation time parameter keeps the measurement operation from sending an unnecessary output corresponding to instantaneous，fluctuating input from the moment the K3NX is turned ON until the end of the preset period．
The compensation time can be set in a range from 0 to 99.9 seconds as the waiting time until the devices subject to measurement become stable after the startup of the power supply．

Hysteresis

The hysteresis of comparative outputs can be set to prevent the chattering of comparative outputs．For more details，refer to Output Operation Timing in Run Mode（found later in this section）．

Output Pattern Selection $[$－五化
The patterns of comparative output are selectable according to the level change．Select the pattern according to the application．

Level Output

Note：The following setting conditions must be satisfied，other－ wise no zone output will turn ON correctly． $\mathrm{LL}<\mathrm{L}<\mathrm{H}<\mathrm{HH}$

Linear Output Range L5Et
A linear output range can be set as required．A value corresponding to the maximum output value and that corresponding to the minimum output value can be set．

Remote／Local Selection r－l

Select remote programming when performing all settings through the host devices and select local programming when performing settings through key operation．

TERMINAL ARRANGEMENT

Terminal Numbers

Note: Terminals 7 to 13 are connected internally.

INPUT UNIT

LC: Load Cell Input

Note: Terminals 7 to 13 are connected internally.
When inputting the external control signals through the open collector:
Transistor Inputs:
ON: Residual voltage must be 3 V max. OFF: Leakage current must be 1.5 mA max. The switching capacity must be 20 mA or greater.

When the external signal input is short-circuited, a voltage of approximately 5 V will be applied to between the terminals 5 to 7 and the COM terminal, and a current of approximately 18 mA (nominal value) will flow.

OUTPUT OPERATION TIMING IN RUN MODE (RELAY OR TRANSISTOR OUTPUTS)

The following timing chart is for a 5-comparative output board when the standard output pattern is selected.

Note: The hysteresis value set in setting mode will be applied to all set values.

BCD OUTPUT TIMING CHART

A request signal from an external device (such as a Programmable Controller) is required to read BCD data. Single Sampling Data Output

Approximately 30 ms after the REQ signal rises, a sample is taken and the DATA VALID signal is output. Read the data when the DATA VALID signal is ON.
The DATA VALID signal will turn OFF in 40 ms , and then in 16 ms , the data will go OFF.
Models with a BCD output have an open collector output configuration so that wired-OR connection is possible.

Continuous Data Output

The K3NV outputs each measurement at an interval of 64 ms when a REQ signal is ON continuously.
If the HOLD signal is ON at the moment the DATA output is switched from data 1 to data 2 or vice versa, the output BCD data will be either data 1 or data 2 according to the timing of the HOLD signal. However, output data will never be low.

BLOCK DIAGRAM

Dimensions

Unit: mm (inch)

K3NV

\qquad

EXAMPLE OF CONNECTION TO PROGRAMMABLE CONTROLLER FOR K3N \square SERIES

NOTE: DIMENSIONS SHOWN ARE IN MILLIMETERS. To convert millimeters to inches divide by 25.4.

OMROM

OMRON ELECTRONICS, INC.
One East Commerce Drive
Schaumburg, IL 60173
1-800-55-OMRON
Cat. No. GC IPM6
11/99

OMRON CANADA, INC.

Printed in U.S.A. Specifications subject to change without notice.

ASH \& ALAIN
Authorised Distributors:-
ASH \& ALAIN INDIA PVT LTD
S-100, F.I.E.E., Okhla Industrial Area, Phase-ii, New Delhi-110020(India) Tel:011-43797575 Fax:011-43797574 E-mail:sales@ashalain.com

